Full Content is available to subscribers

Subscribe/Learn More  >

Ballast Support Condition Affecting Crosstie Performance Investigated Through Discrete Element Method

[+] Author Affiliations
Wenting Hou, Bin Feng, Erol Tutumluer

University of Illinois at Urbana-Champaign, Urbana, IL

Wei Li

Zhejiang University, Hangzhou, China

Paper No. JRC2018-6258, pp. V001T01A022; 7 pages
  • 2018 Joint Rail Conference
  • 2018 Joint Rail Conference
  • Pittsburgh, Pennsylvania, USA, April 18–20, 2018
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5097-8
  • Copyright © 2018 by ASME


This paper reports on the ballast layer mesoscale behavior, tie-ballast interaction, and ballast-subgrade interaction under five crosstie support conditions, namely full support, lack of rail seat support, lack of center support, high center binding, and severe center binding condition. Discrete Element Method, an effective technique to study particulate natured unbound aggregate materials, i.e., ballast, was adopted in this study. The DEM simulations included one-tie spacing geometry, approximately 11,000 polyhedral particles. The ballast gradation used in DEM models was according to the AREMA No. 3 and No. 4A specifications. The shape properties of ballast particles in DEM models was consistent with field collected samples. The pressure distributions along tie-ballast interface under rail seat load of 10-kips predicted by DEM simulations were in good agreement with the results backcalculated from laboratory tests, which validated the DEM models. Next, DEM simulations considered rail seat loads of 20-kips and 25-kips. The predicted results indicated that support condition is a key factor for predicting normal stress distribution and force transmission within ballast layer. Ballast particles in shoulders and areas with poor support indicated low or negligible contact stresses. Extremely high normal stresses observed in some support conditions often exceeded single particle crushing load limit and thus would cause ballast particle breakage and layer degradation under repeated loading. Further, the tie-ballast pressure captured in some scenarios could be higher than allowable maximum pressure of 85-psi under concrete tie in AREMA standard. Finally, the pressure at bottom of the ballast layer obtained from the DEM simulations were compared with top of subgrade pressure calculated from analytical/empirical equations such as Talbot equation and AREMA manual.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In