Full Content is available to subscribers

Subscribe/Learn More  >

Railway Ballast Strength and Permeability Affecting Track Performance Under Dry and Wet Conditions

[+] Author Affiliations
Issam Qamhia, Maximilian Orihuela, Maziar Moaveni

University of Illinois at Urbana-Champaign, Rantoul, IL

Scott Schmidt

Nicholson Construction Company, Kalamazoo, MI

Erol Tutumluer

University of Illinois at Urbana-Champaign, Urbana, IL

Colin Basye, Dingqing Li

Transportation Technology Center, Inc., Pueblo, CO

Paper No. JRC2018-6256, pp. V001T01A021; 10 pages
  • 2018 Joint Rail Conference
  • 2018 Joint Rail Conference
  • Pittsburgh, Pennsylvania, USA, April 18–20, 2018
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5097-8
  • Copyright © 2018 by ASME


Railway ballast is a major structural component of railroad track that also facilitates the drainage of water. Particle breakage and abrasion due to dynamic loading and environmental impacts causes ballast to age and degrade. The finer materials generated from ballast degradation can adversely affect the track stability especially under wet conditions. This paper investigates through laboratory testing the effect of moisture on the behavior and performance of in-service ballast. The tested ballast samples were initially subjected to an artificial rain system as well as train loadings in the Facility for Accelerated Service Testing (FAST) at the Transportation Technology Center, Inc. (TTCI). The rainy test section experiment applied realistic dynamic freight train loads and continuously monitored the test sections to determine the effects of moisture and saturation conditions on the field performance trends of ballasted track. Accordingly, ballast samples at varying levels of degradation were collected from the test locations to investigate ballast gradations as well as strength and permeability characteristics at dry and wet conditions. Shear strength tests were performed using a large-scale triaxial test machine, known as the TX-24, to study ballast degradation effects on the strength of dry ballast. Materials finer than the 3/8 in. (9.5 mm) were then collected and studied for the moisture-density behavior using a modified Proctor type compactive effort. Shear strength samples with the same gradations and degradation levels were prepared and tested at varying moisture contents of the 3/8 in. (9.5 mm) fraction ranging from 3% to 9%, with the latter being the optimum moisture content of these finer materials. The wet ballast triaxial test samples had strength values only in the range of 38% to 65% of the dry strengths. In addition to the strength tests, constant head permeability tests were also conducted on the ballast samples which demonstrated quite low and negligible horizontal flow amounts through ballast under static pressure heads and at various hydraulic gradients.

Copyright © 2018 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In