0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulating Fouling Material Transport in Ballast

[+] Author Affiliations
Yu Qian, Shengwei Zhu, Yi Wang, Dimitris C. Rizos

University of South Carolina, Columbia, SC

Paper No. JRC2018-6187, pp. V001T01A016; 5 pages
doi:10.1115/JRC2018-6187
From:
  • 2018 Joint Rail Conference
  • 2018 Joint Rail Conference
  • Pittsburgh, Pennsylvania, USA, April 18–20, 2018
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5097-8
  • Copyright © 2018 by ASME

abstract

A ballast layer is used to facilitate drainage and load transferring in railroad track structure. With tonnage accumulation, fine materials, such as coal dust, clay, locomotive sand, degraded ballast aggregate, and other small particles, will penetrate into the clean and uniformly graded ballast layer causing contamination, usually referred as fouling. Fouling is unfavorable to railroad track performance due to the reduced drainage and consequent engineering challenges including but not limited to mud pumping, excessive settlement, and reduced bearing capacity. Previous research has investigated the mechanical behavior of the fouled ballast in both the laboratory and the field environment. However, the fundamental mechanism that governs the manner in which the fouling materials are transported and accumulated in the ballast layer is not thoroughly understood. Researchers at the University of South Carolina have initiated the effort to investigate the fouling process in the ballast layer. High-fidelity computational fluid dynamics (CFD) simulation is used to study the fluid flow patterns in order to quantify the transport behavior of the fine particles within the ballast layer and potential impact to the track performance and drainage. Specifically, the ballast layer is treated as a porous material, and the fouling materials are modeled as distinct individual particles to assess the probability of their trajectory location. This paper presents the preliminary results of the simulated path of the fouling materials in the ballast layer under seepage, and demonstrates the capability of the developed algorithm to quantify the effects of the ballast layer characteristics on fouling materials transport. The findings from this study will be beneficial for optimizing shoulder ballast cleaning or undercutting practices.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In