0

Full Content is available to subscribers

Subscribe/Learn More  >

Determining the Remaining Prestress Force in a Prestressed Concrete Railroad Tie Through Loading in Direct Tension

[+] Author Affiliations
James D. Scott, Robert J. Peterman, B. Terry Beck, Aaron A. Robertson, Chih-Hang John Wu

Kansas State University, Manhattan, KS

Kyle A. Riding

University of Florida, Gainesville, FL

Paper No. JRC2018-6168, pp. V001T01A011; 10 pages
doi:10.1115/JRC2018-6168
From:
  • 2018 Joint Rail Conference
  • 2018 Joint Rail Conference
  • Pittsburgh, Pennsylvania, USA, April 18–20, 2018
  • Conference Sponsors: Rail Transportation Division
  • ISBN: 978-0-7918-5097-8
  • Copyright © 2018 by ASME

abstract

Extensive research has been conducted by the research team in recent years to determine the prestressing steel and concrete properties that must be provided to ensure that the transfer length of a prestressed concrete railroad tie is shorter than the distance from the edge of the tie to the rail seat. In addition, a significant of amount of data has been collected that indicates high bonding stresses can produce longitudinal splitting cracks along the reinforcement. In a study of how prestressing steel and concrete properties relate to a ties propensity for longitudinal cracking, existing ties that have performed well in track for over 25 years without issues are being evaluated. One parameter of interest that affects the bonding stress is the amount of prestress force in a railroad tie, which is unknown for the existing ties being evaluated. The current paper focuses on a new method that was developed for determining the remaining prestress force in a tie.

In a previous method for determining the prestress force, ties were first loaded in four-point bending to initiate flexural cracking. The crack opening displacement was measured in order to determine the applied load required to reopen the crack. Using this load and the cross-sectional parameters at the location of the crack, the prestress force in the tie can be calculated using static equilibrium. The issue with this method is that as a tie is being loaded and the crack propagates, there is a continuous change in the stiffness of the cross-section. This results in the load versus crack opening displacment curve being overly rounded. This increases the error when determining the load required to reopen the crack, and increases the uncertainty of the calculated prestress force. The new test method eliminates the problems associated with flexural testing by loading the ties longitudinally in tension.

In the new proposed experimental method, ties that have been pre-cracked in the center are pulled in tension. Similar to the previous method, the crack opening displacement is measured while the tie is loaded. For the crack to fully open, the applied load must exceed the prestress force holding the crack closed. Prior to the crack opening, the applied load is resisted by the composite section of concrete and prestressing tendons. Once the crack as fully opened, the applied load is resisted by the prestessing tendons only. This creates two distinctly linear portions of the load versus crack opening displacement curve, one prior to the crack opening, and one after. The beginning of the linear portion post-crack opening marks a very clear upper bound for the amount of prestressing force in a tie. This method can estimate the remaining prestress force in a tie with much greater accuracy than the previous method, and eliminates the need of the cross-sectional parameters at the crack location. To verify this method, tests were first conducted on a smaller scale with prismatic beams with a known initial prestressing force. Then the method was applied to a full scale existing tie to determine the remaining prestress force. Results are presented for testing of both the prismatic beams, and the full scale tie.

Copyright © 2018 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In