Full Content is available to subscribers

Subscribe/Learn More  >

Reliability of Ti/SiC Metal Matrix Composites

[+] Author Affiliations
Ashish Mishra, Sivasambu Mahesh

Indian Institute of Technology Madras, Chennai, India

Paper No. GTINDIA2017-4859, pp. V002T10A009; 9 pages
  • ASME 2017 Gas Turbine India Conference
  • Volume 2: Structures and Dynamics; Renewable Energy (Solar, Wind); Inlets and Exhausts; Emerging Technologies (Hybrid Electric Propulsion, UAV, ...); GT Operation and Maintenance; Materials and Manufacturing (Including Coatings, Composites, CMCs, Additive Manufacturing); Analytics and Digital Solutions for Gas Turbines/Rotating Machinery
  • Bangalore, India, December 7–8, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5851-6
  • Copyright © 2017 by ASME


Components such as bladed rings, and bladed disks fabiricated out of titanium matrix composites were extensively explored in the two decades since about 1990 as light weight replacements for conventional superalloy blades and disks in the intermediate hot stages of gas turbines. One of the challenges, which has hindered their adoption is the relative unreliability of the composite components; nominally identical Ti composite specimen display a much larger variability in strength than their superalloy counterparts.

In the present work, we have quantified the reliability of Ti matrix composites by developing a detailed micromechanical-statistical model of their failure. The micromechanical model resolves fibres, matrix, and the interface, and accounts for such failure modes as fibre breakage, matrix cracking, matrix plasticity, interfacial sliding, and debonding. It also accounts for mechanical interaction between these various failure modes. The mechanical model’s predictions are validated against synchotron X-ray measurements reported in the literature, both after loading, and unloading. Using the detailed micromechanical model, Ti matrix composite was simulated following a Monte Carlo framework. These simulations yield the empirical strength distribution of the Ti matrix composite, and insights into the dominant failure mode. The latter allows the construction of a stochastic model of composite failure. The stochastic model can be used to determine safe working loads as a function of composite size for any desired reliability level.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In