0

Full Content is available to subscribers

Subscribe/Learn More  >

Multiple Low Velocity Impact on Twisted Composite Stiffened Blade: A Finite Element Approach

[+] Author Affiliations
Mrutyunjay Rout, Amit Karmakar

Jadavpur University, Kolkata, India

Sasank Shekhar Hota

DRIEMS, Cuttack, India

Paper No. GTINDIA2017-4772, pp. V002T05A026; 8 pages
doi:10.1115/GTINDIA2017-4772
From:
  • ASME 2017 Gas Turbine India Conference
  • Volume 2: Structures and Dynamics; Renewable Energy (Solar, Wind); Inlets and Exhausts; Emerging Technologies (Hybrid Electric Propulsion, UAV, ...); GT Operation and Maintenance; Materials and Manufacturing (Including Coatings, Composites, CMCs, Additive Manufacturing); Analytics and Digital Solutions for Gas Turbines/Rotating Machinery
  • Bangalore, India, December 7–8, 2017
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5851-6
  • Copyright © 2017 by ASME

abstract

This paper presents the numerical modeling of a twisted stiffened cylindrical shell employing finite element approach to investigate the transient response due to impact of multiple masses, wherein the shell and the stiffener are modeled as 8 noded isoparametric shell element with five degrees of freedom per node and 3 noded isoparametric curved beam element having four degrees of freedom per node, respectively. The stiffener element is considered as a discrete beam element and its nodal degrees of freedom are transferred to the corresponding degrees of freedom of the shell element considering curvature and eccentricity. The impact force is predicted by employing modified Hertzian contact law relating the contact force to local indentation. As indentation takes place the impactor induces damage and permanent deformation in the contact zone of stiffened panel, as a result the loading and unloading curves are different. Different mathematical equations are considered for both loading and unloading cases in the stiffened panel during low-velocity impact. The accuracy and effectiveness of the finite element approach is verified by comparing the results with the corresponding solutions of analytical as well as standard computational methods available in the open literature. The optimum design of a structure can only be obtained by understanding the impact behavior and the roles of various parameters affecting the response. Hence, parametric study has been carried out to predict the time histories of contact force, displacement of the impact point and in-plane stresses during low-velocity concurrent/delayed impact at multiple locations of the stationary and rotating stiffened shell.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In