0

Juice Debittering: Basic Science, Optimization, and Recent Advances PUBLIC ACCESS

[+] Author Affiliations
Fred Ghanem

ITOCHU Chemicals America Inc., White Plains, NY

Paper No. CEC2012-5701, pp. 1-13; 13 pages
doi:10.1115/CEC2012-5701
From:
  • ASME 2012 Citrus Engineering Conference
  • ASME 2012 Citrus Engineering Conference
  • Lake Alfred, Florida, USA, March 15, 2012
  • Conference Sponsors: ASME Florida Section
  • ISBN: 978-0-7918-9998-4
  • Compilation Copyright © 2018 ASME

abstract

Bitterness such as Naringin in Grapefruits and Limonin in all Citrus fruits have a strong influence on consumers’ choices for their favorite juices. There have been many methods from ultrafiltration to biocatalysis used to lower such bitter compounds and make the juices more desirable by the consumer. One major tool for such debittering operation is the use of synthetic adsorbents which will be discussed in this paper.

Ion exchange resins and adsorbents have been used for over a century in various food applications to concentrate flavors, decolorize juices, and enhance the quality of the final product. These types of resins are being synthesized to specific parameters to distinguish them from other tools.

Mitsubishi Chemical’s work on optimizing their synthetic adsorbents for high bitterness removal from citrus juice was investigated. Parameters such as the base matrix structure, pore size and distribution, as well as the effect of surface area were studied. As the FDA has strict definitions about the appropriate resin chemistry that can be used in a food application (21 CFR 173.65), progress in new resin chemistry was limited by such regulations.

This paper discusses the use of the original Sepabeads SP70 which was introduced into the market about 20 years ago, to the high capacity resin, Sepabeads SP700, which was introduced 10 years ago, and finally, to the Sepabeads SP710, which is the current optimized version of 20 years of research work. Mitsubishi Chemical’s resins were compared to other resins in the industry for the removal of naringin, limonin, and 8-hydroxyfuranocoumarin (furanocoumarins are compounds that affects the proper absorption of certain medications). Proper regeneration and rejuvenation of these resins were outlined.

Paper published with permission.

Compilation Copyright © 2018 ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In