0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Performance of Paper Pulp and Wood Glue Composite

[+] Author Affiliations
Daniel M. Madyira, Takalani Mabirimisa, Tien-Chien Jen

University of Johannesburg, Johannesburg, South Africa

Paper No. IMECE2017-71880, pp. V014T11A026; 4 pages
doi:10.1115/IMECE2017-71880
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5849-3
  • Copyright © 2017 by ASME

abstract

Due to depleting natural resources, it is necessary to develop eco-composite materials that are fabricated from sustainable and inexpensive materials such as recycled paper or cellulose-based materials. Such materials are required to meet the mechanical performance at par with traditional materials. The main aim of this study was to investigate the mechanical performance of a composite material fabricated from paper pulp and polyvinyl acetate (wood glue). It is expected that a high strength composite material may be achieved by varying the amount of paper-pulp fiber fraction from 7.5%, 10%, 20%, 30%, 40%, 50% to 60% weight. A tensile test was conducted and it was found that an increase in fiber content on the fabricated composite resulted in an increase in ultimate tensile strength and a decrease in corresponding strain. Furthermore, the material becomes more brittle at higher fiber content and conversely, more ductile at lower fiber content. The ultimate tensile strength was found to be 7.69 MPa at 60% w.t fiber and the minimum tensile strength was 0.12 MPa at 0% w.t fiber. There were no signs of fiber content limit observed in the obtained results. It was concluded that a composite of moderate strength was produced and future work is required in order to fully understand how the composite behaves at different loading conditions. However, an optimum fiber content limit will have to be determined.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In