0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling the Influence of Build Orientation on the Monotonic and Cyclic Response of Additively Manufactured Stainless Steel GP1/17-4PH

[+] Author Affiliations
Sanna F. Siddiqui, Nathan O’Nora, Ali P. Gordon

University of Central Florida, Orlando, FL

Abiodun A. Fasoro

Central State University, Wilberforce, OH

Paper No. IMECE2017-71561, pp. V014T11A003; 10 pages
doi:10.1115/IMECE2017-71561
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5849-3
  • Copyright © 2017 by ASME

abstract

Rapid prototyping has led to strides in improved mechanical part design flexibility and manufacturing time. Along with these advances, however, is the extremely high costs associated with additively manufacturing components that can limit a comprehensive understanding of the mechanical performance of these materials. This can be circumvented through the use of constitutive models which can both support experimental findings in addition to providing approximations of expected material behavior. The present study has demonstrated the influence of build orientation on as-built direct metal laser sintered (DMLS) stainless steel (SS) GP1/17-4PH, manufactured along varying orientations in the xy build plane, through strain-controlled tension and completely reversed low cycle fatigue experiments. Experimental findings from monotonic tension testing are used to model failure surfaces, which can be used to approximate failure regions for DMLS SS GP1 manufactured along varying build orientations within the horizontal xy build plane. Further, a Chaboche model is used to simulate the cyclic response of this material based upon experimental findings through low cycle fatigue testing. Conclusive findings from these models are used to assess the vital role that build orientation plays in affecting the mechanical performance of additively manufactured materials.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In