0

Full Content is available to subscribers

Subscribe/Learn More  >

Divers Augmented Vision Display (DAVD)

[+] Author Affiliations
Richard J. Manley, Dennis G. Gallagher, William W. Hughes, III, Allie M. Pilcher

Naval Surface Warfare Center, Panama City, FL

Paper No. IMECE2017-70026, pp. V014T07A012; 7 pages
doi:10.1115/IMECE2017-70026
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5849-3
  • Copyright © 2017 by ASME

abstract

Military diving operations are routinely conducted in what can be one of the most inhospitable environments on the planet, frequently characterized by zero visibility. The inability to clearly see the immediate operational environment has historically been a serious limitation to manned diving operations — whether the mission is ship husbandry, under water construction, salvage, or scientific research.

U.S. Navy diving is an integral part of the nation’s defense strategy with a continuing requirement to conduct manned intervention in the water column. To ensure technical superiority across the entire spectrum of diving operations we must identify, exploit, and de velop technology to advance the state-of-the-art in diving equipment. This can only be achieved by investing in, and supporting, focused research and development with specific goals to further diving capabilities.

Under a project sponsored by the Office of Naval Research (ONR) and Naval Sea Systems Command (NAVSEA), the Naval Surface Warfare Center-Panama City Division (NSWC PCD) has de veloped a prototype see-through head-up display system for a U. S. Navy diving helmet — the Divers Augmented Vision Display (DAVD). The DAVD system uses waveguide optical display modules that couple images from a micro display into a waveguide optic, translate the images through a series of internal reflections, finally exiting toward the diver’s eye providing a magnified, see-through virtual image at a specific distance in front of the diver. The virtual images can be critical information and sensor data including sonar images, ship husbandry and underwater construction schematics, enhanced navigation displays, augmented reality, and text messages.

NSWC PCD is the U.S. Navy’s leading laboratory for research, development, testing, evaluation, and technology transition of diver visual display systems; with unique facilities for rapid prototyping and manufacturing, human systems integration and extreme environment testing. Along with NSWC PCD, the Navy Experimental Diving Unit (NEDU), and Naval Diving and Salvage Training Center (NDSTC) are co-located tenant commands at the Naval Support Activity Panama City (NSA PC).

This paper provides a brief background on the development of diver head-up display systems, waveguide optical display technology, development of the DAVD prototype, results of diver evaluations, and recommendations for accelerated development of this game changing capability.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In