0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of an Analytical Model for Beams With Two Dimples in Opposing Direction

[+] Author Affiliations
Mofareh Ghazwani, Koorosh Naghshineh

Western Michigan University, Kalamazoo, MI

Kyle Myers

Penn State State College, State College, PA

Paper No. IMECE2017-70631, pp. V013T01A002; 9 pages
doi:10.1115/IMECE2017-70631
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 13: Acoustics, Vibration and Phononics
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5848-6
  • Copyright © 2017 by ASME

abstract

Structures such as beams and plates can produce unwanted noise and vibration. An emerging technique can reduce noise and vibration without any additional weight or cost. This method focuses on creating two dimples in the same and opposite direction on a beam’s surface where the effect of dimples on its natural frequencies is the problem of interest. The change in the natural frequency between both cases have a different trend. The strategic approach to calculate natural frequencies is as follows: first, a boundary value model (BVM) is developed for a beam with two dimples and subject to various boundary conditions using Hamilton’s Variational Principle. Differential equations describing the motion of each segment are presented. Beam natural frequencies and mode shapes are obtained using a numerical solution of the differential equations. A finite element method (FEM) is used to model the dimpled beam and verify the natural frequencies of the BVM. Both methods are also validated experimentally. The experimental results show a good agreement with the BVM and FEM results. A fixed-fixed beam with two dimples in the same and opposite direction is considered as an example in order to compute its natural frequencies and mode shapes. The effect of dimple locations and angles on the natural frequencies are investigated. The natural frequencies of each case represent a greater sensitivity to change in dimple angle for dimples placed at high modal strain energy regions of a uniform beam.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In