0

Full Content is available to subscribers

Subscribe/Learn More  >

Electrostatic Suppression of the Leidenfrost State Using AC Voltages

[+] Author Affiliations
Onur Ozkan, Vaibhav Bahadur

University of Texas at Austin, Austin, TX

Paper No. IMECE2017-70203, pp. V008T10A076; 6 pages
doi:10.1115/IMECE2017-70203
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 8: Heat Transfer and Thermal Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5843-1
  • Copyright © 2017 by ASME

abstract

The Leidenfrost effect is a well-known phenomenon in boiling, wherein a vapor layer forms between a hot surface and the liquid, thereby degrading heat transfer. Electrowetting (EW) can be used to fundamentally eliminate the Leidenfrost state by electrostatically attracting the liquid towards the surface; the resulting enhanced wetting substantially increases heat transfer. This work presents preliminary results of a study to understand the influence of AC voltages on Leidenfrost state suppression; prior studies have only utilized DC voltages. It is seen that the AC frequency is a very important determinant of the effectiveness of Leidenfrost state suppression. The electrostatic force which attracts the liquid to the surface decreases with increasing AC frequency; this reduces the extent of suppression. This effect is measured and studied by high speed visualization of suppression as well as measurements of the evaporation/boiling rate under AC EW conditions. It is observed that the instabilities (resulting in suppression) at the vapor-liquid interface reduce at higher frequency. The evaporation rate also reduces with AC frequency, as less heat is picked up by the droplet. It is noted that the evaporation rate has lower and upper bounds, which correspond to the evaporation rates without any EW and with DC voltage, respectively. Overall, this work highlights the importance of the AC frequency as a tool to control the extent of suppression and the boiling heat transfer rate.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In