Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study of Impact Force of a Low-Speed Droplet Colliding on the Solid Surface at Different Impact Angles

[+] Author Affiliations
Bin Zhang, Qian Lv, Penghua Guo, Jingyin Li

Xi’an Jiaotong University, Xi’an, China

Paper No. IMECE2017-70882, pp. V007T09A022; 7 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluids Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5842-4
  • Copyright © 2017 by ASME


Erosion problems due to droplet impacts are widely encountered in many fields. This may result in deterioration or even failure of the elements, and should be taken into consideration in the design of machines. The impact force is thought of as an essential factor in material erosion. In this paper, a highly sensitive piezoelectric force transducer was employed to record the impact force of the low-speed droplet colliding on an aluminum plate at different impact angles, in combination with a high-speed camera used to capture the impact process of the droplet. The results showed that the experimental setup can measure the impact force evolution precisely and reliably. The peak of the normal impact force increases with the normal velocity quadratically, while the impulse increases with the normal velocity linearly. In addition, a smaller impact angle would lead to longer time duration of the impact force. The high-speed images show that the initial impact patterns of the droplet have similar behavior in the initial impact process, with regardless of vertical or oblique impacts.

Copyright © 2017 by ASME
Topics: Drops



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In