Full Content is available to subscribers

Subscribe/Learn More  >

Three-Dimensional CFD Simulation of Prime Mover Stirling Engine

[+] Author Affiliations
E. Rogdakis, P. Bitsikas, G. Dogkas

National Technical University of Athens, Athens, Greece

Paper No. IMECE2017-70155, pp. V006T08A071; 10 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 6: Energy
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5841-7
  • Copyright © 2017 by ASME


A three-dimensional Computational Fluid Dynamics - CFD simulation is conducted on a Stirling engine. The temperature in the engine spaces and the temperature profile along the regenerator are graphically presented, along with the density and the gas flow patterns in selected parts of the engine. The maximum value of pressure drop is slightly more than 6% of the mean engine pressure at the same instance. The maximum loss due to pressure drop is equal to 5 kW.

In addition, the CFD results are compared to those coming from a one-dimensional model. The comparison includes data regarding the pressure of the gas during the engine cycle, the gas mass flow-rate in all the engine spaces, the respective points of flow reversal and the gas pressure drop.

Finally, the net work output and efficiency of the engine are calculated. The net work output of the engine is equal to 6.7 kW and the engine’s efficiency is equal to 51%. The possible sources of further losses are discussed.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In