Full Content is available to subscribers

Subscribe/Learn More  >

Carbon Footprint of Energy Systems: Liquefied Petroleum Gas Based Cooking vs Electricity Based Cooking in Ecuador

[+] Author Affiliations
Angel D. Ramirez, Edgar F. Perez, Andrea J. Boero, Daniel A. Salas

ESPOL, Guayaquil, Ecuador

Paper No. IMECE2017-70351, pp. V006T08A061; 8 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 6: Energy
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5841-7
  • Copyright © 2017 by ASME


Cooking is one of the most important final household uses of energy. In Ecuador, the main energy carrier for this use is liquefied petroleum gas (LPG), which normally is supplied in bottles. LPG is imported and heavily subsidized for household consumption. The Government has promoted the use of electric induction stoves provided the hydropower generation capacity in Ecuador is projected to grow.

Sustainability issues should be considered when changes in energy systems are analyzed. Life cycle assessment (LCA) is a methodological framework that can be used to quantify the environmental performance of any product or service, including energy systems. LCA can be used to quantify a range of environmental impact categories including Climate Change. The life cycle greenhouse gas emissions of a product or service are also known as carbon footprint.

The objective of this study is to quantify the change in the carbon footprint of the household cooking system from the current based on LPG to the proposed based on electricity, and the cumulative energy demand (CED) for cooking with both technologies, using the LCA methodology, in order to provide a basis for the development of policies to reach the maximum mitigation of greenhouse gases (GHG). Several scenarios that consider different electricity generation mixes, cooking efficiency and emissions profile are studied. The functional unit for comparison was defined as “1 effective MJ”, which is 1 MJ transferred to the food during cooking. System boundaries for the assessment included resources extraction, processing, energy carrier supply, cooking and manufacturing of the stove.

The results depend highly on the carbon footprint of the electricity system and, in a lesser extent, on the stove efficiency. Main results indicate that a carbon footprint mitigation occurs when changing the conventional LPG to a highly hydropower based cooking system, and that a higher life cycle energy efficiency is obtained when a high stove efficiency is considered. However, a greater carbon footprint may occur when cooking is performed using fossil derived power, which is a possible case when cooking is performed during peak demand of electricity.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In