Full Content is available to subscribers

Subscribe/Learn More  >

Research on Control Strategy of Integrated Gasification Humid Air Turbine Cycle

[+] Author Affiliations
Tingting Wei, Dengji Zhou, Shixi Ma, Huisheng Zhang, Zhenhua Lu

Shanghai Jiao Tong University, Shanghai, China

Di Huang

State Grid Jiangsu Electric Power Research Institute, Nanjing, China

Paper No. IMECE2017-71366, pp. V006T08A058; 10 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 6: Energy
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5841-7
  • Copyright © 2017 by ASME


Integrated Gasification Humid Air Turbine (IGHAT) cycle is an advanced power generation system, combining gasification technology and Humid Air Turbine (HAT) cycle. It draws great attention in the energy field considering its high specific power, high efficiency and low emission. There are only a few H AT cycle plants and IGHAT cycle is still on the theory research stage. Therefore, the study on control strategies of IGHAT cycle has great significance in the future development of this system. A design method of control strategy is proposed for the unknown gas turbine systems. The control strategy design is summarized after IGHAT control strategy and logic is designed based on the dynamic simulation results and the operation experience of gas turbine power station preliminarily. Then, control logic is configured and a virtual control system of IGHAT cycle is established on the Ovation distribution control platform. The model-in-loop control platform is eventually set up based on the interaction between the simulation model and the control system. A case study is implemented on this model-in-loop control platform to demonstrate its feasibility in the practical industry control system. The simulation of the fuel switching control mode and the power control mode is analyzed. The power in IGHAT cycle is increased by 24.12% and 32.47% respectively, compared to the ones in the simple cycle and the regenerative cycle. And the efficiency of IGHAT cycle is 1.699% higher than that of the regenerative cycle. Low component efficiency caused by off-design performance and low humidity caused by high pressure are the main limits for system performance. The results of case study show the feasibility of the control strategy design method proposed in this paper.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In