0

Full Content is available to subscribers

Subscribe/Learn More  >

Studies on Coal Ignition and Combustion Characteristics

[+] Author Affiliations
Xue Chen, MingYan Gu, XianHui He, Jimin Wang, HuaQiang Chu

Anhui University of Technology, Ma’anshan, China

Dan Yan

Purdue University Northwest, Hammond, IN

FengShan Liu

National Research Council Canada, Ottawa, ON, Canada

Paper No. IMECE2017-70256, pp. V006T08A050; 7 pages
doi:10.1115/IMECE2017-70256
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 6: Energy
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5841-7
  • Copyright © 2017 by ASME

abstract

A 2-D numerical model of flow, heat transfer, and combustion of coal particles in a laminar gas flow at O2/CO2 atmosphere was developed based on the Eulerian-Lagrangian methodology. The gas-phase combustion was modeled using the GRI-Mech 3.0. The motion of coal particles was simulated using a trajectory model. The model was employed to study the coal ignition time, temperature and mass changes. The effects of particle diameter, the flow temperature and oxygen concentration on the ignition time and the combustion characteristics of coal particles were also investigated. The results obtained show that smaller size particle experiences a shorter ignition time with a higher coal temperature. A higher gas temperature leads to a shorter coal particle ignition time; increasing the flow temperature the difference in the ignition time of different sized coal particles decreases. The coal particle ignition time is decreased when the oxygen concentration is increased.

Copyright © 2017 by ASME
Topics: Combustion , Coal , Ignition

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In