Full Content is available to subscribers

Subscribe/Learn More  >

Adaptive Pre-Compensation of the Contouring Error for High-Precision Parametric Curved Contour Following

[+] Author Affiliations
Jian-Wei Ma, De-Ning Song, Zhen-Yuan Jia, Ning Zhang, Guo-Qing Hu, Wei-Wei Su

Dalian University of Technology, Dalian, China

Paper No. IMECE2017-71284, pp. V04BT05A023; 8 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5838-7
  • Copyright © 2017 by ASME


Tasks of parametric curved contour following can be widely seen in computer-numerical-control (CNC) machining of parts with complex geometric features. Due to the existence of the contouring error in contour-following tasks, the machining precision of CNC machine tools will be seriously degraded. To reduce this error, methods such as cross-coupled control are extensively researched. However, these methods focus on compensation of the already happened contouring error, based on approximation of the error value according to the online measured actual motion positions. This paper presents an adaptive real-time pre-compensation approach, so as to control the contouring error before it really occurs. First, actual motion positions of the feed axes at the next sampling period are predicted, according to the z-domain model of each feed-drive system. To improve the adaptive capacity of the actual position prediction, the feed-drive models are identified online using the least-square method. After that, an accurate contouring-error calculation method, based on tangential-error backstepping using a moving frame, is proposed. Finally, the adaptive estimated contouring error at the next sampling period is compensated at the current period, thus beforehand improving the contour accuracy. Simulation and experimental tests are conducted to demonstrate the feasibility of the presented methods. From the testing results, it can be seen that the presented error-estimation method can precisely compute the contouring error, and the pre-compensation approach improves the contour-tracking accuracy dramatically, which is of great significance for improving the machining precision of the CNC machine tools.

Copyright © 2017 by ASME
Topics: Errors



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In