Full Content is available to subscribers

Subscribe/Learn More  >

Periodic Motions in a 2-DOF Self-Excited Duffing Oscillator

[+] Author Affiliations
Yeyin Xu, Albert C. J. Luo

Southern Illinois University Edwardsville, Edwardsville, IL

Paper No. IMECE2017-70783, pp. V04BT05A021; 8 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5838-7
  • Copyright © 2017 by ASME


In this paper, analytical solutions of periodic motions in a 2-DOF self-excited Duffing oscillator are investigated through a semi-analytical method. The semi-analytical method discretizes the self-excited Duffing oscillator for the discrete implicit mappings. Through the implicit mapping, period-1 motion varying with excitation frequency are presented, and the corresponding stability and bifurcation are discussed via the eigenvalues analysis. The Neimark and saddle-node bifurcations of the periodic motion are obtained. Initial conditions for numerical simulations are from analytical solutions. Numerical and analytical solutions of periodic motions are illustrated for comparison.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In