Full Content is available to subscribers

Subscribe/Learn More  >

Use of the Moving Frame Method in Dynamics to Model Gyroscopic Control of Small Crafts at Sea: Theory — Part 1

[+] Author Affiliations
Joakim Nyland, Håkon Teigland, Thomas J. Impelluso

Western Norway University of Applied Sciences (HVL), Bergen, Norway

Paper No. IMECE2017-70108, pp. V04AT05A059; 12 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5837-0
  • Copyright © 2017 by ASME


This paper presents new method in dynamics — the Moving Frame Method (MFM) — and uses it to address a challenge faceing Norwegian shipping. Large offshore renewable energy investments require the use of maintenance boats to keep them in operable conditions. Unfortunately, due to rough seas in some project locations, the transferring of crew members from vessel to turbine or platform is fraught with safety concerns. These concerns can be alleviated by controlling the motion of the transfer vessel. This research studies an add-on stability system for marine vessels to ease the process of offshore platform maintenance and crew member safety. Specifically, this research concerns an internal active system — an active gyroscopic stabilizer — and a more powerful method of theoretical and computational mechanics. This paper derives the equations of motion of a model system equipped with dual gyroscopic stabilizers, using the MFM. The equations of motion are numerically solved to obtain a numerical simulation. The method exploits a variational principle with a restricted variation of the angular velocity. The MFM simplifies dynamics, enables a consistent notation, from 2D to 3D analysis and exploits matrix algebra in lieu of the vector cross product. Finally, in a companion paper to this one, the mathematical model and the numerical simulation is verified with experiments conducted in a large-scale wave tank.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In