Full Content is available to subscribers

Subscribe/Learn More  >

A Simplified Analytical Model of Rolling/Sliding Behavior and Friction in Four-Point-Contact Ball Bearings and Screws

[+] Author Affiliations
Bo Lin, Molong Duan, Chinedum E. Okwudire

University of Michigan, Ann Arbor, MI

Jason S. Wou

Ford Motor Company, Dearborn, MI

Paper No. IMECE2017-72486, pp. V04AT05A054; 9 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5837-0
  • Copyright © 2017 by ASME


Four-point contact between ball and raceways is common in machine elements like ball bearings and ball screws. The ideal four-point-contact machine element is designed with pure rolling (i.e., no sliding at contact points) to minimize friction. However, this ideal may not always be achieved, leading to sliding and higher frictional forces. In this paper, a simplified analytical model for rolling/sliding behavior and friction in four-point contact is developed, based on Coulomb friction model and rigid body assumption. It is found that pure rolling is only possible when the contact-point geometry satisfies a certain relationship. When pure rolling condition fails to hold, the sliding contact point(s) can be determined analytically as a function of contact forces and contact angles. Case studies are presented to demonstrate how the proposed model could elucidate the roles of misalignments, manufacturing errors and loading conditions on rolling/sliding behavior and friction.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In