0

Full Content is available to subscribers

Subscribe/Learn More  >

Identification of Non-Linear Parameters of a Nuclear Fuel Rod

[+] Author Affiliations
Giovanni Ferrari, Stanislas Le Guisquet, Prabakaran Balasubramanian, Marco Amabili

McGill University, Montreal, QC, Canada

Brian Painter, Kostas Karazis

AREVA Inc., Lynchburg, VA

Paper No. IMECE2017-71418, pp. V04AT05A041; 11 pages
doi:10.1115/IMECE2017-71418
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5837-0
  • Copyright © 2017 by ASME

abstract

In Pressurized Water Reactors (PWR), fuel assemblies are made up of fuel rods, long slender tubes filled with uranium pellets, bundled together using spacer grids. These structures are subjected to fluid-structure interactions, due to the flowing coolant surrounding the fuel assemblies inside the core, coupled with large-amplitude vibrations in case of external seismic excitation. Therefore, understanding the nonlinear response of the structure, and, particularly, its dissipation, is of paramount importance for the choice of safety margins, in the design of fuel assemblies, to ensure their functionality and safety in the worst external condition scenarios.

To model the nonlinear dynamic response of fuel rods, the identification of the nonlinear stiffness and damping parameters is required. A tool based on harmonic balance method was developed to identify these parameters from the experimentally obtained force-response curves, considering one-to-one internal resonance phenomenon present in axisymmetric structures such as cylindrical tubes and shells. To validate the tool, it was applied to the reference case of circular cylindrical shell filled with water, which revealed an increase of damping with the excitation amplitude.

In the following paper, the more realistic case of a single fuel rod with clamped-clamped boundary condition was investigated by applying harmonic excitation at various force levels. The nonlinear parameters including damping were extracted from experimental results by means of the adapted tool. An increase in damping with excitation amplitude has been shown according to earlier studies.

Copyright © 2017 by ASME
Topics: Fuel rods

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In