Full Content is available to subscribers

Subscribe/Learn More  >

Stochastic Simulation of Diffusive Behavior of Macromolecules Encapsulated in Electrospun Fibers: A Parametric Study

[+] Author Affiliations
Christopher Stabile, Karen Chang Yan

College of New Jersey, Ewing, NJ

Paper No. IMECE2017-72018, pp. V003T04A089; 7 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5836-3
  • Copyright © 2017 by ASME


Electrospinning is a versatile technique to produce nano/micro fibers with controlled morphology in terms of fiber diameter, alignment etc. With multiple configurations including single axial, co-axial, tri-axial, and co-spinning, this method enables researchers to produce electrospun (ES) fibers with bioactive molecules encapsulated in order to mimic the extracellular matrix for tissue engineering applications. It is of great interest to understand and control the release rate of the bioactive molecules to examine the effects of bioactive molecules such as growth factors on cells. We developed a stochastic simulation method based on the Fick’s diffusion equation to model the diffusive behaviors of macromolecules encapsulated in electrospun fibers. This paper presents a detailed parametric study including 1) the effects of inherent random variation within the samples such as distribution of diameters, initial concentration, diffusion constants, and 2) the effects of volume of release medium. MATHEMATICA is used to carry out the simulations. The computed results are compared with experimental data in the literature.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In