0

Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Platform-System to Study the Effects of a Vestibular Prosthesis on Non-Human Primate Postural Control

[+] Author Affiliations
Lara A. Thompson

University of the District of Columbia, Washington, DC

Csilla Haburcakova, Richard F. Lewis

Harvard Medical School, Boston, MA

Paper No. IMECE2017-70724, pp. V003T04A075; 5 pages
doi:10.1115/IMECE2017-70724
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5836-3
  • Copyright © 2017 by ASME

abstract

For the several millions of vestibular loss sufferers nationwide, daily-living is severely affected in that common everyday tasks, such as getting out of bed at night, maintaining balance on a moving bus, or walking on an uneven surface, may cause loss of stability leading to falls and injury. Aside from loss of balance, blurred vision and vertigo (perceived spinning sensation) are also extremely debilitating in vestibular impaired individuals. For the investigation of implants and prostheses that are being developed towards implementation in humans, non-human primates are a key component.

The purpose of our study was to implement a distinctive balance platform-system to investigate postural responses for moderate to severe vestibular loss and invasive vestibular prosthesis-assisted non-human primates (rhesus monkeys) for test balance conditions of various task-difficulty levels. Although the need for vestibular rehabilitative solutions is apparent, postural responses for a broad range of peripheral vestibular function, and for various stationary and moving support conditions, have not been systematically investigated.

The measurement system used in this research was unique in that it allowed us to conduct animal experiments, not investigated previously; such experiments are necessary towards the development on an invasive vestibular prosthesis to be used in humans suffering from vestibular loss. Our platform-system facilitated the study of rhesus monkey posture for stationary support surface conditions (i.e., quiet stance and head turns; more versus fewer footplate cues and large versus small base-of-support) and for dynamic support surface conditions (i.e., pseudorandom roll-tilts of the support surface). Further, the platform-system was used to systematically study postural responses that will serve as baseline measures for future vestibular-focused human and non-human primate posture studies.

Copyright © 2017 by ASME
Topics: Prostheses

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In