Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Biomechanical Performances of Electrospun Fiber Anchored Silicone Disc As an Intervertebral Disc Implant

[+] Author Affiliations
Subhakar Tummala, Shahram Riahinezhad, M. Khandaker

University of Central Oklahoma, Edmond, OK

Oguz Dogan, Fatih Karpat

Uludağ University, Bursa, Turkey

Paper No. IMECE2017-70957, pp. V003T04A069; 5 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5836-3
  • Copyright © 2017 by ASME


A tissue engineered intervertebral disc (IVD) anchor the circumference and top/bottom sides of nucleus pulposus (NP) implants with annulus fibrosus and endplates. The proper anchorage of a NP implant to annulus fibrosus and endplates is possible by enclosing the NP by electrospun fiber mesh that mimics the surrounding structures. The biomechanical performance of silicone based NP can be improved if electrospun fiber mesh can secure all sides of silicone NP. However, it is unknown whether silicone surrounded by an electrospun nanofiber matrix can better restore the biomechanical functions of the disc in compare to intact, IVD made with silicone only, and, IVD made with silicone anchored all sides by nanofiber. This study compared the compressive and viscoelastic properties of a silicone and electrospun nanofiber anchored silicone discs (ENAS) under compression and shear with the same properties of human NP. This study developed a nonlinear finite element model (FEM) for the intact and ENAS implanted human lumbar vertebra segments. The compression test results show that ENAS disc compressive modulus (87.47 ± 7.56 kPa, n = 3) is significantly higher in compare to silicone gel (38.75 ± 2.15 kPa, n = 3) and the value is within the range of the compressive modulus of human NP (64.9 ± 44.1 kPa). The rheological test results show that ENAS disc compressive modulus (16 ∼ 40 kPa) is significantly higher in compare to silicone gel (0.10 ∼ 0.16 kPa) and the value is within the range of the compressive modulus of human NP (7 ∼ 20 kPa). These results confirm the suitability of ENAS disc over silicone as NP implant. A finite element model has been developed based on the ENAS properties. The FEA results showed that ENAS can restore better the biomechanical motions of a lumbar vertebra segments in compare to silicone NP.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In