0

Full Content is available to subscribers

Subscribe/Learn More  >

Test Analysis of Youth and Adult Football Helmet Head Injury Risk Resulting From Repeat Impacts in High Humidity and Temperature

[+] Author Affiliations
Kenneth J. Saczalski, Mark N. West

Environmental Research & Safety Technologists, Newport Beach, CA

Todd K. Saczalski

TKS Consulting, Sedona, AZ

Luis Frausto

Exova OCM, Anaheim, CA

Mark C. Pozzi

Sandia Safety Sciences, Edgewood, NM

Paper No. IMECE2017-70754, pp. V003T04A066; 12 pages
doi:10.1115/IMECE2017-70754
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5836-3
  • Copyright © 2017 by ASME

abstract

Design of an optimally safe football helmet system requires an awareness and evaluation of the factors and variables that can adversely affect the impact attenuating performance of energy absorbing (EA) pad materials needed to minimize transmission of linear and rotational forces applied to the head so that risk of head injury is reduced. For instance, player head sweating can induce high temperatures and moisture within a helmet system (i.e. a Hot-Wet condition) which can result in degradation of helmet EA capacity and cause increased measures of head injury risk levels, which are often used for comparative evaluation of helmet designs.

In this study, a “multivariable” experimental method was utilized to demonstrate an efficient means for assessment and comparison of currently representative adult and youth football helmet system designs when subjected to a range of variables that included, among other factors: temperature-moisture effects; impact energy; and, repeat impacts. Both quasi-static (QS) compression testing of commonly used EA materials and dynamic impact testing of full helmet systems were conducted and the results are presented in Tables and graphic form.

The EA pad types that were QS tested included: Thermoplastic-Polyurethane (TPU) “waffle shaped” EA pad configurations; load rate sensitive “Gel” foam padding; and, dual and single density elastomeric foam padding. Dynamic helmet repeat impact tests were conducted by using a pendulum impact test device where various helmet designs were mounted to a Hybrid-III head and neck system and impacted against a non-yielding surface at energy levels of 108J and 130J after being subjected to ambient and Hot-Wet conditions.

The QS tests showed that a short Hot-Wet soak time of only a few hours’ noticeably diminished EA levels. Also, the dynamic full helmet system testing demonstrated that the “Hot-Wet” condition tended to degrade helmet impact attenuation performance such that, depending on the size and type of EA material provided in the crush zone, head injury risk measures tended to increase. Finally, examples of the use and benefits of a “multivariable” experimental method for helmet injury risk assessment, not reported on previously, are provided.

Copyright © 2017 by ASME
Topics: Temperature , Wounds , Risk

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In