0

Full Content is available to subscribers

Subscribe/Learn More  >

Infantry Soldier Cooling

[+] Author Affiliations
Michael Kerwin, Christopher Bascomb, John Culver

United States Military Academy, West Point, NY

Paper No. IMECE2017-70086, pp. V003T04A049; 8 pages
doi:10.1115/IMECE2017-70086
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5836-3

abstract

This report discusses the design problem of developing an air-based cooling system for an infantry soldier. The background explores the different designs that already exist as well as specific parts and materials that will be essential to the design process. Currently, liquid-based cooling systems are the most explored types of cooling devices. However, there are specific downsides to this type of cooling device. As opposed to an air-based system, water requires more energy to be cooled, and therefore more battery power. The liquid-based system is also relatively bulky and heavy due to battery size and the water that runs through the system. With air-based cooling systems, efficient cooling is possible. An air-based cooling system was tested in a laboratory and field environment. In a humid environment, a desiccant attachment can improve the cooling device’s effectiveness. The cooling design effectively reduces the wearer’s core body temperature through evaporative cooling. The design evaporates a significant amount of sweat from wearer’s back and torso. While the prototype can be improved, evaporative cooling is an effective cooling solution for Soldiers.

Topics: Cooling , Soldiers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In