Full Content is available to subscribers

Subscribe/Learn More  >

POD Analysis of the Impact Dynamics of the Olive Tree Branch: Nature’s Paradigm of a Complex Soft-Stiff Structural System in Biomechanics

[+] Author Affiliations
Ioannis T. Georgiou

National Technical University of Athens, Athens, Greece

Paper No. IMECE2017-72386, pp. V003T04A048; 10 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5836-3
  • Copyright © 2017 by ASME


Geometry consistent spatio-temporal measurements of the experimental acceleration of olive tree branches were analyzed with advanced POD tools in an effort to gain knowledge on the mechanics-dynamics of this bio-mechanical structure. To pave the way for understanding the dynamics of this system, both the typical olive tree as a whole and its typical branch are approached as interacting soft-stiff continuum mechanical systems. The POD analysis reveals that the impact response is a nonlinear vibration with very fast dissipation. The POD modal amplitudes are nonlinear vibrations of continuous, broadband frequency spectrum. Initially they exhibit regular phases of nonlinear slow dissipation-and-amplification followed by irregular, fast dissipation-and-amplification phases. Sequentially applied impacts at the branch soft area results in a complete detachment of the fruit. The POD analysis reveals that this occurs because the response is highly localized in the soft area where the impact is applied and thus it transfers its momentum to the fruits. The work is supplemented with analysis of field measurements of the acceleration dynamics of orchard olive tree branches excited by harvesting devices generating combing clouds of impulsive forces aimed at detaching the olive fruit by momentum transfer.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In