Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Reconstruction of Multi-Fidelity Traumatic Head Injury due to Blunt Impact

[+] Author Affiliations
X. Gary Tan, Amit Bagchi

U.S. Naval Research Laboratory, Washington, DC

Paper No. IMECE2017-70610, pp. V003T04A034; 8 pages
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5836-3


Traumatic brain injury (TBI) is one of the most common injuries to service members in recent conflicts. Computational models can offer insights in understanding the underlying mechanism of brain injury, which lead to the crucial development of effective personal protective equipment designed to prevent or mitigate the TBI.

Historically many computational models were developed for the brain injury study. However, these models use relatively coarse mesh with a less detailed head anatomy. Many models consider the head only and thus cannot properly model the real scenario, i.e., accidental fall, blunt impact or blast loading. A whole-body finite element model can represent the real scenario but is very expensive to use.

By combining the high-fidelity human head model with an articulated human body model, we developed the computational multi-fidelity human models to investigate the blunt- and blast-related TBI efficiently. A high-fidelity computational head model was generated from the high resolution image data to accurately reproduce the complex musculoskeletal and tissue structure of the head. The fast-running articulated human body model is based on the multi-body dynamics and was used to reconstruct the accidental falls. By utilizing the kinematics and force and moment at the joint of the articulated human body model, we can realistically simulate the blunt impact and assess the brain injury using the high-fidelity head model.

Topics: Modeling , Wounds



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In