0

Full Content is available to subscribers

Subscribe/Learn More  >

A Finite Element Model of a Surgical Knot

[+] Author Affiliations
Arz Y. Qwam Alden, Peter A. Gustafson

Western Michigan University, Kalamazoo, MI

Andrew G. Geeslin

Borgess Orthopaedics, Kalamazoo, MI

Jeffrey C. King

Bronson Orthopaedics, Kalamazoo, MI

Paper No. IMECE2017-72201, pp. V003T04A030; 9 pages
doi:10.1115/IMECE2017-72201
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5836-3
  • Copyright © 2017 by ASME

abstract

Background Surgical knots are one of several structures which can fail during surgical repair. However, there is no universal agreement on the superiority (best/safest) of one particular surgical knot technique. Tensile testing of repaired soft tissue has been used to assess the efficacy of surgical knot tying techniques, however, few computational models exist. The purpose of this study was to create a validated biomechanical model to evaluate the effect of knot configuration on the mechanical performance of surgical sutures.

Methods Two sutures were tested experimentally to find the mechanical properties and strength. Single throw knots were also tested for strength. Finite element models were constructed of each configuration and correlation was established.

Results The finite element results are quantitatively and qualitatively consistent with experimental findings. The FE model stress concentrations are also consistent with published strength reductions. Model and experimental results are presented using as-manufactured No. 2 FiberWire as well as its core and jacket constituents separately.

Clinical Relevance This paper describes a model which can evaluate the effect of knot topology on the mechanics of surgical suture. In the future, the model may be used to evaluate the mechanical differences between surgical techniques and suture materials. The findings may impact choices for suture and knot types selected for soft tissue repairs.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In