0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigating the Effects of Stent-Graft Structural Features Using Computational Fluid Dynamics

[+] Author Affiliations
Eric M. Looyenga, Aaron M. Propst, Stephen P. Gent

South Dakota State University, Brookings, SD

Paper No. IMECE2017-71442, pp. V003T04A024; 9 pages
doi:10.1115/IMECE2017-71442
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5836-3
  • Copyright © 2017 by ASME

abstract

The objective of this study was to assess the effects structural features of endovascular stent-grafts used to repair abdominal aortic aneurysms (AAA) have on the flow mechanics and near-wall hemodynamics using Computational Fluid Dynamics (CFD) simulations. This research compared two test case model representations: 1) a stent graft that included the wire struts in the graft walls, and 2) a stent graft that excluded the struts in the computational mesh. The two computer-aided design models were created to represent a bifurcated stent graft in the abdominal aorta, with the stent beginning in the thoracic region of the aorta and branching into the common iliac arteries. The geometries were imported as surface meshes into a commercially available CFD solver. Both models account for viscous pulsatile blood flow of the cardiac cycle using blood properties gathered from previous research. Results of the two simulations were compared by using established metrics, including oscillating shear index (OSI), time average wall shear stress (TAWSS), and relative residence time (RRT), all of which are used to predict the likelihood of clot formation, endothelial damage, and device failure. Scalar and vector scenes allow for visualization, and data was exported for quantifying threshold results of the parameters. Due to the expense of stent grafts and the risks involved with clinical trial, CFD modeling is becoming more prominent in endovascular repair of aneurysms. The overarching goal of this study is to enhance current models of stent grafts, which can potentially be used to complement clinical trial for stent graft development.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In