0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of Different Sensitivity Analysis Methods in the Context of Dimensional Management

[+] Author Affiliations
Björn Heling, Thomas Oberleiter, Benjamin Schleich, Kai Willner, Sandro Wartzack

Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany

Paper No. IMECE2017-70550, pp. V002T02A102; 7 pages
doi:10.1115/IMECE2017-70550
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5835-6
  • Copyright © 2017 by ASME

abstract

Although mass production parts look the same, every manufactured part is unique, at least on a closer inspection. The reason for this is that every manufactured part is inevitable subjected to different scattering influencing factors and variation in the manufacturing process, such as varying temperatures or tool wear. All these factors inevitably lead to parts, which deviate from their ideal shape. Products, which are built from these deviation-afflicted parts consequently show deviations from their ideal properties. To ensure that every single product nevertheless meets its technical requirements, it is necessary to specify the permitted deviations. Furthermore it is necessary to estimate the consequences of the permitted deviations, which is done via tolerance analysis. During this process the imperfect parts are assembled virtually and the effects of the geometric deviations can be calculated during a variation simulation.

Since the tolerance analysis is to enable engineers to identify weak points in an early design stage it is important to know which contribution every single tolerance has on a certain quality-relevant characteristic, to restrict or increase the correct tolerances. In this paper two different approaches are shown and compared to represent the statistical behavior and the strongly connected sensitivity analyses. In particular a newly developed approach, which is based on fuzzy arithmetic, is compared to the established EFAST-method. The exemplary application of both methods and the comparison of the results are illustrated on a case study.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In