0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Moisture Diffusion Effect on Peel and Sheer Stresses in Adhesively Bonded Single Lap Joints Under Shear-Tensile Loading

[+] Author Affiliations
Emad Mazhari, Sayed A. Nassar

Oakland University, Rochester, MI

Paper No. IMECE2017-70127, pp. V002T02A080; 10 pages
doi:10.1115/IMECE2017-70127
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5835-6
  • Copyright © 2017 by ASME

abstract

In this study, the Fickian diffusion formulation is extended to the adhesive layer of a single lap joint model, in order to develop a coupled peel and shear stress-diffusion model. Constitutive equation are formulated for shear and peel stresses in terms of adhesive material properties that are time and location-dependent. Numerical solution is provided for the effect of diffusion on shear and peel stresses distribution. Detailed discussion of the results is presented.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In