0

Full Content is available to subscribers

Subscribe/Learn More  >

Multiscale Sheet Metal Hydroforming and Burst Pressure Estimates

[+] Author Affiliations
William J. Emblom, Ayotunde Olayinka, Thomas C. Pesacreta

University of Louisiana at Lafayette, Lafayette, LA

Scott W. Wagner

Michigan Technological University, Houghton, MI

Muhammad A. Wahab

Louisiana State University, Baton Rouge, LA

Paper No. IMECE2017-70347, pp. V002T02A059; 9 pages
doi:10.1115/IMECE2017-70347
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5835-6
  • Copyright © 2017 by ASME

abstract

Micro- and multiscale material properties must be considered when manufacturing miniature devices, especially when considering utilizing multiscale sheet metal hydroforming processes. One of the critical considerations during the design process is the burst pressure for the sheet metal which is a limiting factor for potential hydroforming operations. In order to simplify determining tearing or rupture conditions, it is sometimes desired to use analytical methods for estimating material properties, including burst pressures, which occur shortly after material instability. Many researchers have developed approximate methods for predicting deformation during open die hydroforming based upon analytical approaches for biaxial conditions for circular and elliptical dies. Additionally, extracting material properties of sheet metal under biaxial conditions such as bulge hydroforming more closely matches forming conditions that the sheet metal will undergo for actual parts. The objective of the current research was to evaluate the analytically developed models’ ability to predict burst conditions and compare those burst results to those obtained from finite element models and experimentation. Stainless steel (annealed 0.2-mm thick AISI 304) was hydroformed in a circular open die with diameter of 11mm. Elliptical dies were also evaluated that had minor diameters of 11mm and aspect ratios down to 0.5. It was found that using the analytical method developed specifically for circular dies was a good predictor for the burst pressure while the more general analytical method for elliptical dies did not agree with either results from finite element analysis or experimental results.

Copyright © 2017 by ASME
Topics: Pressure , Sheet metal

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In