0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational Simulation of Dynamic Recrystallization and Severe Deformation of AA7075 Alloy

[+] Author Affiliations
José Luis Hernández-Rivera, Perla Julieta Cerda Vázquez, Jose de Jesús Cruz Rivera, Mitsuo Osvaldo Ramos Azpeitia

Universidad Autónoma de San Luis Potosí, San Luis Potosí, México

Pedro de Jesús García Zugasti

Instituto Tecnológico de San Luis Potosí, San Luis Potosí, México

Paper No. IMECE2017-72508, pp. V002T02A020; 8 pages
doi:10.1115/IMECE2017-72508
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 2: Advanced Manufacturing
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5835-6
  • Copyright © 2017 by ASME

abstract

The empirical model of dynamic recrystallization (DRX) coupled with DEFORM 3D® software (based on the finite element method (FEM)) was used to predict the microstructural evolution of the AA7075 processed by four passes of equal channel angular pressing (ECAP) at 250° C. The DRX model parameters were taken from the literature. The simulation results showed that the DRX exhibited a heterogeneous distribution from the back to the frontal part of the sample and this heterogeneity markedly diminished in the fourth pass. The recrystallized volume fraction reached 50% in most of the sample in the fourth pass and the average grain size did not show significant changes, going from an initial value of 16.4 μm to 12.5 μm. This latter result was attributed to the fact that DRX occurred partially even for the last pass. Experimental testing of ECAP was conducted by using the same conditions of computational simulation. The validation of model was performed by comparison of average grain size values with those obtained experimentally by means of image analysis applied on micrographs that were acquired by means of optical microscopy (OM). Hardness and peak load values also indicated the occurrence of a partial dynamic recrystallization and recovery.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In