0

Full Content is available to subscribers

Subscribe/Learn More  >

Micromechanical Progressive Failure Analysis of Fiber-Reinforced Composite Using Refined Beam Models

[+] Author Affiliations
Ibrahim Kaleel, Marco Petrolo, Erasmo Carrera

Politecnico di Torino, Torino, Italy

Anthony M. Waas

University of Washington, Seattle, WA

Paper No. IMECE2017-71304, pp. V001T03A032; 9 pages
doi:10.1115/IMECE2017-71304
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5834-9
  • Copyright © 2017 by ASME

abstract

An efficient and novel micromechanical computational platform for progressive failure analysis of fiber reinforced composites is presented. The numerical framework is based on a class of refined beam models called Carrera Unified Formulation (CUF), a generalized hierarchical formulation which yields a refined structural theory via variable kinematic description. The crack band theory is implemented in the framework to capture the damage propagation within the constituents of composite materials. A representative volume element (RVE) containing randomly distributed fibers is modeled using the Component-Wise approach (CW), an extension of CUF beam model based on Lagrange type polynomials. The efficiency of the proposed numerical framework is achieved through the ability of the CUF models to provide accurate three-dimensional displacement and stress fields at a reduced computational cost.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In