0

Full Content is available to subscribers

Subscribe/Learn More  >

Free Vibration Analysis of Uniform and Asymmetric Composite Pretwisted Rotating Thin Walled Beam

[+] Author Affiliations
Touraj Farsadi, Özgün Şener, Altan Kayran

Middle East Technical University, Ankara, Turkey

Paper No. IMECE2017-70531, pp. V001T03A016; 22 pages
doi:10.1115/IMECE2017-70531
From:
  • ASME 2017 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Tampa, Florida, USA, November 3–9, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5834-9
  • Copyright © 2017 by ASME

abstract

Composite pretwisted rotating thin walled beams (TWB) can be used as the structural model for composite helicopter and wind turbine blades for the study of aeroelastic response of the blades. In the present study, semi-analytical solution is performed for the free vibration analysis of uniform and asymmetric composite pretwisted rotating TWB. The approximation of the Green-Lagrange strain tensor is adopted to derive the strain field of the system. The Euler–Lagrange governing equations of the dynamic system and the related boundary conditions are derived via Hamilton’s principle. In order to solve the governing set of equations, the Extended Galerkin’s Method (EGM) is employed. For this purpose, the structural variables are separated in space and time and the assumed mode shapes are defined to satisfy the essential boundary conditions. For the purpose of validating the TWB model developed, the commercial finite element analysis tool, MSC Nastran is used to compare the results of modal analysis obtained by the present structural model with the finite element solution. With the results obtained in this paper, it is aimed to ascertain the effect of various coupling in circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness CUS configurations, pretwist, angular velocity and fibre orientation, on the natural frequencies and the mode shapes of the rotating thin-walled composite beams. The results are expected to propose better predictions of the vibrational behavior of thin walled structures in general, and in the design of rotor blades of turbomachinery, rotorcraft and wind turbine systems, in particular.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In