0

Plant Performance History of an Innovative Gate Valve in Critical Service Applications PUBLIC ACCESS

[+] Author Affiliations
M. S. Kalsi, Patricio Alvarez

Kalsi Engineering, Inc., Sugar Land, TX

Thomas White, Micheal Green

Entergy/Pilgrim Nuclear Station, Plymouth, MA

Paper No. PVS2017-3536, pp. V001T04A002; 8 pages
doi:10.1115/PVS2017-3536
From:
  • ASME/NRC 2017 13th Pump and Valve Symposium
  • ASME/NRC 2017 13th Pump and Valve Symposium
  • Silver Spring, Maryland, USA, July 17–18, 2017
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4070-2
  • Compilation Copyright © 2017 ASME

abstract

A previous paper [1] describes the key features of an innovative gate valve design that was developed to overcome seat leakage problems, high maintenance costs as well as issues identified in the Nuclear Regulatory Commission (NRC) Generic Letters 89-10, 95-07 and 96-05 with conventional gate valves [2,3,4]. The earlier paper was published within a year after the new design valves were installed at the Pilgrim Nuclear Plant — the plant that took the initiative to form a teaming arrangement as described in [1] which facilitated this innovative development. The current paper documents the successful performance history of 22 years at the Pilgrim plant, as well as performance history at several other nuclear power plants where these valves have been installed for many years in containment isolation service that requires operation under pipe rupture conditions and require tight shut-off in both Pressurized Water Reactors (PWRs) and Boiling Water Reactors (BWRs). The performance history of the new valve has shown to provide significant performance advantage by eliminating the chronic leakage problems and high maintenance costs in these critical service applications. This paper includes a summary of the design, analysis and separate effects testing described in detail in the earlier paper. Flow loop testing was performed on these valves under normal plant operation, various thermal binding and pressure locking scenarios, and accident/pipe rupture conditions. The valve was designed, analyzed and tested to satisfy the requirements of ANSI B16.41 [9]; it also satisfies the requirements of ASME QME 1-2012 [10]. The results of the long-term performance history including any degradation observed and its root cause are summarized in the paper.

Paper published with permission.

Compilation Copyright © 2017 ASME
This article is only available in the PDF format.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In