Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Digitalized Hydrostatic Drive Solution for Modern Wind Turbine

[+] Author Affiliations
Jincheng Chen, Feng Wang

Zhejiang University, Hangzhou, China

Kim A. Stelson

University of Minnesota, Minneapolis, MN

Paper No. FPMC2017-4352, pp. V001T01A074; 7 pages
  • ASME/BATH 2017 Symposium on Fluid Power and Motion Control
  • ASME/BATH 2017 Symposium on Fluid Power and Motion Control
  • Sarasota, Forida, USA, October 16–19, 2017
  • Conference Sponsors: Fluid Power Systems and Technology Division
  • ISBN: 978-0-7918-5833-2
  • Copyright © 2017 by ASME


Gearbox is a concern in modern wind turbines, increasing the maintenance cost and therefore the cost of energy (COE). A hydrostatic transmission (HST) improves the turbine drivetrain reliability by using slightly compressible mineral oil as the working medium rather than a rigid gearbox. An HST eliminates the power converter since it is a continuous variable transmission (CVT), making the turbine simpler and more cost effective. The turbine operates below the rated wind speed for a considerable time in a year, making the variable hydraulic motor run at partial displacement for the most common configuration of a hydrostatic wind turbine, a fixed displacement pump and a variable displacement motor. This results in low drivetrain efficiency. Moreover, large variable displacement motors for megawatt turbine are commercially unavailable. A digitalized hydrostatic drive for a modern wind turbine is proposed to improve the drivetrain efficiency at low wind speeds. The digital coding method for hydrostatic wind turbine is studied. A dynamic simulation model of the digitalized hydrostatic (dHST) wind turbine has been developed in Simulink. A widely used efficiency model for the hydrostatic pump and motors is used in the simulation to make the study practical. The proposed digitalized hydrostatic solution has been compared with a conventional hydrostatic solution. Simulation results show the benefits of digitalized hydrostatic transmission over conventional hydrostatic transmission in drivetrain efficiency, system complexity and cost.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In