Full Content is available to subscribers

Subscribe/Learn More  >

Hydro-Mechanical Constant-Speed Motion Control Using Shear Thickening Fluid

[+] Author Affiliations
Mohamad Sleiman, Karim Hassoun, Matthias Liermann

American University of Beirut, Beirut, Lebanon

Paper No. FPMC2017-4207, pp. V001T01A003; 6 pages
  • ASME/BATH 2017 Symposium on Fluid Power and Motion Control
  • ASME/BATH 2017 Symposium on Fluid Power and Motion Control
  • Sarasota, Forida, USA, October 16–19, 2017
  • Conference Sponsors: Fluid Power Systems and Technology Division
  • ISBN: 978-0-7918-5833-2
  • Copyright © 2017 by ASME


This paper proposes a novel approach to control the velocity of a piston using dilatant fluid. Commonly, a pressure compensated flow control valve is used for this purpose. It produces excellent results but is mechanically complex. A setup is proposed that makes use of the unique properties of dilatant (i.e. shear thickening) non-Newtonian fluids. A simple tube section filled with dilatant material can be used to achieve very low sensitivity of flow rate vs. pressure difference. A numerical study shows how the power law which relates the fluid shear rate to its viscosity results in this low sensitivity of flow to pressure difference. An experimental setup was build to validate the findings using a cheap and commercially available shear thickening fluid. It was found that the dilatant material used does not have a highly pronounced dilatant property and therefore the sensitivity of flow vs. pressure difference was not as low as desired. Nevertheless, the results support the practical applicability of this novel type of velocity control.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In