Full Content is available to subscribers

Subscribe/Learn More  >

Model-Based Optimization and Pressure Fluctuation Control of Pressure Reservoir in Electrically Controlled Fuel Injection System for Single Cylinder Diesel Engine

[+] Author Affiliations
Ke Zhang, Zhifeng Xie, Ming Zhou

Tsinghua University, Beijing, China

Paper No. ICEF2017-3513, pp. V002T07A002; 10 pages
  • ASME 2017 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
  • Seattle, Washington, USA, October 15–18, 2017
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5832-5
  • Copyright © 2017 by ASME


Single-cylinder diesel engines usually employ mechanically actuated or time-type electrically controlled fuel injection systems. But due to the lack of flexibility to provide high pressure and fully varying injection parameters, fuel efficiency and emissions are poor. Although modern multi-cylinder engines have employed high pressure common rail fuel injection system for a long time, this technology has not been demonstrated in single-cylinder diesel engines. Due to the small installation space and little fuel injection amount of single cylinder diesel engine, high pressure common rail fuel injection system cannot be employed directly. In this study an electrically controlled high pressure fuel injection system of time-pressure-type (PTFS) for single-cylinder diesel engine was demonstrated. PTFS integrated the fuel pump and pressure reservoir (PR) to reduce installation space, which enabled it to match various kinds of single-cylinder diesel engines. However, the volume of the PR of PTFS is still limited, leading to obvious pressure fluctuation induced by periodic fuel pumping and injection. Pressure fluctuation might affect the stability and consistency of fuel injection, deteriorating the combustion and emissions of the engine further. This work established a mathematical model for the system, and studied the effect of the main parameters of the PR to the pressure fluctuations in the PR. The structure and dimensions of the system were optimized and a damping mechanism was proposed to reduce the pressure fluctuation. The optimized pressure fluctuation of PTFS achieved an acceptable level which can support steady and effective fuel injection. As a result, the fuel consumption efficiency and emission level of single cylinder diesel engine were enhanced.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In