0

Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Investigation on NO2 Formation in a Natural Gas-Diesel Dual Fuel Engine

[+] Author Affiliations
Yu Li, Hailin Li

West Virginia University, Morgantown, WV

Yongzhi Li, Mingfa Yao

Tianjin University, Tianjin, China

Hongsheng Guo

National Research Council, Ottawa, ON, Canada

Paper No. ICEF2017-3688, pp. V002T06A027; 10 pages
doi:10.1115/ICEF2017-3688
From:
  • ASME 2017 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
  • Seattle, Washington, USA, October 15–18, 2017
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5832-5
  • Copyright © 2017 by ASME and Her Majesty the Queen in Right of Canada

abstract

The burning of natural gas (NG) in compression ignition dual fuel engines has been highlighted for its fuel flexibility, higher thermal efficiency and reduced particulate matter (PM) emissions. Recent research has reported the significant impact of the introduction of NG to the intake port on nitrogen dioxide (NO2) emissions, particularly at the low loads. However, the research on the mechanism of NO2 formation in dual fuel engines has not been reported.

This research simulates the formation and destruction of NO2 in a NG-diesel dual fuel engine using commercial CFD software CONVERGE coupled with a reduced primary reference fuel (PRF) mechanism consisting of 45 species and 142 reactions. The model was validated by comparing the simulated cylinder pressure, heat release rate, and nitrogen oxides (NOx) emissions with experimental data. The validated model was used to simulate the formation and destruction of NO2 in a NG-diesel dual fuel engine. The formation of NO2 and its correlation with the local concentration of nitric oxide (NO), methane, and temperature were examined and discussed. It was revealed that NO2 was mainly formed in the interface region between the hot NO-containing combustion products and the relatively cool unburnt methane-air mixture. NO2 formed at the early combustion stage is usually destructed to NO after the complete oxidation of methane and n-heptane, while NO2 formed during the post-combustion process would survive and exit the engine. This was supported by the distribution of NO and NO2 in the equivalence ratio (ER)-T diagram.

A detailed analysis of the chemical reactions occurring in the NO2 containing zone consisting of NO2, NO, O2, methane, etc., was conducted using a quasi-homogeneous constant volume model to identify the key reactions and species dominating NO2 formation and destruction. The HO2 produced during the post combustion process of methane was identified as the primary species dominating the formation of NO2. The simulation revealed the key reaction path for the formation of HO2 noted as CH4->CH3->CH2O->HCO->HO2, with conversion ratios of 98%, 74%, 90%, 98%, accordingly. The backward reaction of OH+NO2 = NO+HO2 consumed 34% of HO2 for the production of NO2.

It was concluded that the increased NO2 emissions from NG-diesel dual fuel engines was formed during the post combustion process due to higher concentration of HO2 produced during the oxidation process of the unburned methane at low temperature.

Copyright © 2017 by ASME and Her Majesty the Queen in Right of Canada
Topics: Fuels , Engines , Diesel

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In