Full Content is available to subscribers

Subscribe/Learn More  >

Three Dimensional Ring Dynamics Modeling Approach for Analyzing Lubrication, Friction and Wear of Piston Ring-Pack

[+] Author Affiliations
K. G. Mahmoud, O. Knaus, T. Parikyan, M. Patete

AVL List GmbH, Graz, Austria

Paper No. ICEF2017-3586, pp. V002T06A013; 9 pages
  • ASME 2017 Internal Combustion Engine Division Fall Technical Conference
  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development
  • Seattle, Washington, USA, October 15–18, 2017
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5832-5
  • Copyright © 2017 by ASME


The automotive industry is subjected to increasing pressure in order to improve fuel efficiency and reduce the CO2 emissions of internal combustion (IC) engines. The power cylinder system (piston, piston ring, and liner) contributes significantly to the friction losses, engine oil consumption and gas leakage called blow-by. The role of cylinder bore shape in engine performance has been the subject of several studies in recent years. High bore distortion must be avoided because it can lead to ring conformability issues, which leads to inadequate sealing resulting in increased blow-by and oil consumption. It also leads to asperity contact between the piston skirt and cylinder bore increasing friction causing abnormally high surface wear. Although bore distortion cannot be eliminated, engine manufacturers strive to contain it within acceptable limits. Therefore, numerical analysis of the power cylinder with physically based mathematical models becomes very essential to the engine and component manufacturer in order to reduce engine development lead time and minimize the number of engine tests.

The integrated ring-pack modeling methodology developed by the authors [1] is used to investigate the piston ring-pack performance. Although the modeling approach can be used for extensive parameter analysis of piston, piston rings and lubrication oil consumption, the influence of the bore distortion on the ring conformability and its impact on blow-by, friction and wear is highlighted in this study. Piston tilting, piston ring twist and surface roughness of the piston ring and liner have been taken into consideration.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In