0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Crank Angle-Resolved Vortex Characteristics Under High Swirl Condition in a Spark-Ignition Direct-Injection Engine

[+] Author Affiliations
Fengnian Zhao, Penghui Ge, Hanyang Zhuang, David L. S. Hung

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, China

Paper No. ICEF2017-3574, pp. V001T03A007; 10 pages
doi:10.1115/ICEF2017-3574
From:
  • ASME 2017 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • Seattle, Washington, USA, October 15–18, 2017
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5831-8
  • Copyright © 2017 by ASME

abstract

In-cylinder air flow structure makes significant impacts on fuel spray dispersion, fuel mixture formation, and flame propagation in spark ignition direct injection (SIDI) engines. While flow vortices can be observed during the early stage of intake stroke, it is very difficult to clearly identify their transient characteristics because these vortices are of multiple length scales with very different swirl motion strength. In this study, a high-speed time-resolved 2D particle image velocimetry (PIV) is applied to record the flow structure of in-cylinder flow field along a swirl plane at 30 mm below the injector tip. First, a discretized method using flow field velocity vectors is presented to identify the location, strength, and rotating direction of vortices at different crank angles. The transients of vortex formation and dissipation processes are revealed by tracing the location and motion of the vortex center during the intake and compression strokes. In addition, an analysis method known as the wind-rose diagram, which is implemented for meteorological application, has been adopted to show the velocity direction distributions of 100 consecutive cycles. Results show that there exists more than one vortex center during early intake stroke and their fluctuations between each cycle can be clearly visualized. In summary, this approach provides an effective way to identify the vortex structure and to track the motion of vortex center for both large-scale and small-scale vortices.

Copyright © 2017 by ASME
Topics: Engines , Vortices , Ignition

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In