0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Investigation on Performance, Combustion and Emission Characteristics of a Low Heat Rejection Engine Using Diesel and Diethyl Ether Blends

[+] Author Affiliations
Krishnamani Selvaraj, Mohanraj Thangavel, Ravikumar Bikramsingh

SASTRA University, Thanjavur, India

Paper No. ICEF2017-3647, pp. V001T02A008; 10 pages
doi:10.1115/ICEF2017-3647
From:
  • ASME 2017 Internal Combustion Engine Division Fall Technical Conference
  • Volume 1: Large Bore Engines; Fuels; Advanced Combustion
  • Seattle, Washington, USA, October 15–18, 2017
  • Conference Sponsors: Internal Combustion Engine Division
  • ISBN: 978-0-7918-5831-8
  • Copyright © 2017 by ASME

abstract

This research work investigates the performance, combustion and emission characteristics of a low heat rejection engine operated on diesel and diethyl ether blends. The combustion chamber walls of the diesel engine insulated by ceramic material were referred to as low heat rejection (LHR) engine. In the LHR engine, an improvement in fuel economy would be obtained by recovering the waste heat rejected to the cooling system as useful work. Initially, the diesel fuel was tested in the conventional engine as a baseline reading for comparison. Then the engine was insulated by coating the engine components of the piston crown and the cylinder liner with aluminum titanate using plasma spray method. In this work, the experiments are conducted using diesel and diethyl ether blends in a conventional and low heat rejection engine at constant speed condition. The experimental results indicate that the brake thermal efficiency increases with increased percentage of diethyl ether in the blends. The maximum brake thermal efficiency was found to be 33.24% for LHR engine using diesel-diethyl ether blend (Diesel 85% & Diethyl ether 15% by volume) at full load condition. The emissions of carbon monoxide and hydrocarbon are decreased due to better combustion characteristics and higher NOx emissions are observed with low heat rejection engine (LHR) compared to the conventional engine using diesel and blended fuels.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In