0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation Based Design of a Thermoelectric Energy Harvesting Device for Aircraft Applications

[+] Author Affiliations
Michalis Lyras, Lito Zymaride, Theodora Kyratsi, Loucas S. Louca

University of Cyprus, Nicosia, Cyprus

Thomas Becker

Airbus Group Innovations, Hamburg, Germany

Paper No. DSCC2017-5355, pp. V003T41A003; 9 pages
doi:10.1115/DSCC2017-5355
From:
  • ASME 2017 Dynamic Systems and Control Conference
  • Volume 3: Vibration in Mechanical Systems; Modeling and Validation; Dynamic Systems and Control Education; Vibrations and Control of Systems; Modeling and Estimation for Vehicle Safety and Integrity; Modeling and Control of IC Engines and Aftertreatment Systems; Unmanned Aerial Vehicles (UAVs) and Their Applications; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Control of Smart Buildings and Microgrids; Energy Systems
  • Tysons, Virginia, USA, October 11–13, 2017
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5829-5
  • Copyright © 2017 by ASME

abstract

Maintenance is, amongst others, a key cost driver in aircraft operation. A wireless monitoring device might be able to reduce these costs. However, the supply of energy to such system via power lines would result in additional cabling and battery operation would lead to additional maintenance. Thermoelectric energy harvesting, as a power source for such devices, is considered as one the most promising approaches for autonomous energy conversion onboard fixed wing aircraft. Using thermoelectric generators (TEGs), the temperature difference, between the inside and outside of the cabin, can be used to generate electrical energy.

In this paper an energy harvesting device, for aircraft application needs and requirements, is designed and optimized using modeling and simulation. A variety of models are used for analyzing the static and dynamic behavior of the device. A one-dimensional heat transfer model is used to identify critical parameters, while a detailed three-dimensional heat-transfer and airflow model is used to study realistic operating conditions. The proposed design leads to a significant increase of peak and average output power, specific energy productions and decrease of response time of the harvester.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In