Full Content is available to subscribers

Subscribe/Learn More  >

Position and Attitude Control by Rotor Tilt and Rotor Speed Synchronization for Single Axis Tilting-Rotor Quadcopter

[+] Author Affiliations
Rumit Kumar, Manish Kumar, Kelly Cohen

University of Cincinnati, Cincinnati, OH

Alireza Nemati

Robert Bosch, Plymouth, MI

Franck Cazaurang

University of Bordeaux, Talence, France

Paper No. DSCC2017-5232, pp. V003T39A005; 10 pages
  • ASME 2017 Dynamic Systems and Control Conference
  • Volume 3: Vibration in Mechanical Systems; Modeling and Validation; Dynamic Systems and Control Education; Vibrations and Control of Systems; Modeling and Estimation for Vehicle Safety and Integrity; Modeling and Control of IC Engines and Aftertreatment Systems; Unmanned Aerial Vehicles (UAVs) and Their Applications; Dynamics and Control of Renewable Energy Systems; Energy Harvesting; Control of Smart Buildings and Microgrids; Energy Systems
  • Tysons, Virginia, USA, October 11–13, 2017
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5829-5
  • Copyright © 2017 by ASME


In this paper, the control maneuvering, and performance analysis of a tilting-rotor quadcopter during autonomous flight is presented. Unlike traditional quadcopters, a tilting-rotor quadcopter provides additional actuated controls as the propeller motors are actuated for tilt which can be utilized to improve efficiency of the aerial vehicle during flight. The tilting-rotor quadcopter design is accomplished by using an additional servo motor for each rotor that enables the rotor to tilt about the axis of quadcopter arm. Here, a detailed control strategy has been discussed to use the propeller tilts for position and orientation control during completely autonomous flights of the quadcopter. In conventional quadcopters, the variation in rotational speeds of the four propellers is utilized for maneuvering. This work incorporates use of varying propeller rotational speeds along with tilting of the propellers for maneuvering the quadcopter during flight. A PD controller is developed to achieve various modes of flight and numerical simulation results are presented demonstrating the performance of the controller. Furthermore, the performance of the tilt-rotor design is compared with respect to the conventional quadcopter in the presence of wind disturbances and uncertainties in the system.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In