Full Content is available to subscribers

Subscribe/Learn More  >

Identification of Resonance Frequencies in Dual-Stage Hard Disk Drives: A Practical Strategy

[+] Author Affiliations
Minghui Zheng, Shiying Zhou, Masayoshi Tomizuka

University of California, Berkeley, Berkeley, CA

Paper No. DSCC2017-5096, pp. V002T23A001; 7 pages
  • ASME 2017 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
  • Tysons, Virginia, USA, October 11–13, 2017
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5828-8
  • Copyright © 2017 by ASME


In hard disk drives (HDDs), there exist multiple mechanical resonances whose central frequencies may shift due to the change of environmental conditions such as the temperature. Such slowly varying resonance frequencies, if not handled properly, may degrade the positioning accuracy and even result in the instability of the closed-loop HDD system. Therefore, it is important to identify these resonance frequencies efficiently without interrupting the reading/writing process in HDDs. One main challenge of the frequency identification in a dual-stage HDD lies in the fact that it is a double-input-single-output (DISO) system. The outputs of the voice coil motor (VCM) and the piezoelectric microactuator (PZT) are coupled together. This paper proposes a practical strategy to identify the resonance frequencies in both the VCM and the PZT without disabling the PZT control process. Bandpass filters are utilized to separate the overall position error signal (PES) into several frequency segments based on priorly-known frequency range for each resonance. Two standard parameter adaptation algorithms are studied and discussed. Simulation results validate the effectiveness of proposed identification strategy.

Copyright © 2017 by ASME
Topics: Resonance , Disks



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In