0

Full Content is available to subscribers

Subscribe/Learn More  >

Undersea Vehicle Autopilot Off Weight Design Compensation

[+] Author Affiliations
Colin D. Begg, Daniel J. Bowman, A. Scott Lewis

Pennsylvania State University, University Park, PA

Paper No. DSCC2017-5131, pp. V002T21A002; 8 pages
doi:10.1115/DSCC2017-5131
From:
  • ASME 2017 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
  • Tysons, Virginia, USA, October 11–13, 2017
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5828-8
  • Copyright © 2017 by ASME

abstract

A service issue that can adversely affect the performance of many undersea vehicles in general application is either over or under weight operation. Depth keeping precision can be impacted when a vehicle is launched at a weight different from that specified in the nominal flight control system design. As a result, overall maneuvering performance and the vehicle application objectives can be significantly impacted. This paper presents a compensation method based on simple expansion of the vehicle’s autopilot depth controller trim schedule. Expansion is defined relative to a vehicle’s nominally fixed weight-buoyancy flight control equilibrium trim design point and refers to practical variances in both net buoyancy and buoyancy-weight center geometric offset. This implementation requires only a simple, highly feasible, dry dockside launch under/overweight measurement for operational flight static reference. Off weight compensation is enabled by a priori determination of the vehicle’s steady speed, straight-horizontal flight path, body pitch, and elevator trim angles when subjected to the expected set range of weight-buoyancy variations. The method and implementation are outlined. A depth step change maneuver, using a high fidelity autopilot-software-in-the-loop maneuvering simulation, is examined to verify the implementation feasibility and effectiveness.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In