Full Content is available to subscribers

Subscribe/Learn More  >

Easy-to-Use 3D Printer for Fabrication of Biological Scaffolds

[+] Author Affiliations
Ashley Armstrong, Andrew Alleyne, Amy Wagoner Johnson

University of Illinois, Urbana-Champaign, Urbana, IL

Paper No. DSCC2017-5147, pp. V002T16A002; 10 pages
  • ASME 2017 Dynamic Systems and Control Conference
  • Volume 2: Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
  • Tysons, Virginia, USA, October 11–13, 2017
  • Conference Sponsors: Dynamic Systems and Control Division
  • ISBN: 978-0-7918-5828-8
  • Copyright © 2017 by ASME


3D printing is a diverse field, in particular for biological or bioengineering applications. As a result, research teams working in this area are often multidisciplinary. A (bio) 3D printer in this research environment should balance performance with ease of use in order to enable system adjustments and operation for all machine users from a wide range of disciplines. This work presents results in the development of an easy-to-use fabrication system capable of producing rectilinear bone scaffolds. Common motion control problems, which are barriers to ease of use, are addressed and implemented in a way that researchers outside of the controls field could easily understand. A dynamic model of a 3-stage position system for bone scaffold fabrication is presented. Further, control design for a feedforward plus feedback controller and a user-friendly ILC feedforward compensator is outlined. The ability of the (bio) 3D printer to print bone scaffolds and the effectiveness of the control architecture is demonstrated.

Copyright © 2017 by ASME
Topics: Manufacturing



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In